Development of novel pipeline for miRNAs, benchmarking and comparing with clinical CLL NGS data

INDRAPRASTHA INSTITUTE of INFORMATION TECHNOLOGY **DELHI**

Advisors:

Dr. Sriram K.

Dr. Anubha Gupta

Dr. Ritu Gupta

Presented by: Vivek Ruhela Ph.D. 18202 (CB)

Outline

- Background
- Motivation
- Problem Statements
- Role of small non-coding RNAs in CLL and their impact on clinical outcome
 - Workflow for the identification of clinically relevant biomarkers in CLL
 - Dysregulated miRNAs in CLL
 - Impact of dysregulated miRNAs on the clinical outcomes in CLL

Background

- Blood cancer is a hematological malignancy caused by neoplastic proliferation of malignant blood cells.
- Blood cancer can be further categorized into the following groups:
 - Leukemia
 - Multiple Myeloma (MM)
 - Lymphomas
- Leukemia is a cancer in which malignant cells are found within bone marrow (BM) and blood cells (BC).
- Leukemia can be further classified into two groups based on the rate of onset of disease as follows:
 - Acute or chronic
 - Myeloid or lymphoid (also known as lymphocytes)
- Multiple myeloma is a malignancy in which there is a abnormal proliferation of malignant plasma cells (PC).
- Lymphomas is a malignancy in lymphoid lineage and causing a lymphomatous static tumor.

Classification of snc/mnc-RNA's

S. No	Name	Seq length (nt)		Biological Functions	Example
1	miRNAs	17 nt-24 nt		Modulation of mRNA Expression	hsa-miR-155, hsa-miR-423 etc.
2	Isomirs	22 nt (avg) [difference in ref mature seq]		Functionally cooperative partners of canonical miRNAs	hsa-let-7e-5p, hsa-let-7e-3p etc
3	Pi-RNAs	26-31		Silencing of transposable elements in germline cells; could function in somatic cells	hsa-piR-4987, hsa-piR-651
4	moRNAs	15 nt – 30 nt		miRNA co-product and alters gene expression and inhibits the proliferation of vascular smooth muscle cells	hsa-moR-21
S. No.	Name	Seq length (nt)	Biological Functions		Example
1	snoRN As	41 nt-180 nt	Pre-rRNA processing; 2- <i>O</i> -methylation and pseudouridination of rRNAs		SNORD73, SNORA69 etc.
2	tRNAs and derivat es	>= 72 nt	Play role as adaptors during translation of the genetic code. Gene expression reguation. the function of tRNA derivatives remains to be Explored		tRF-1, tRF-3, tRF-5, tRF-1001 etc.

Table-1: Classification of sncRNAs/mncRNAs

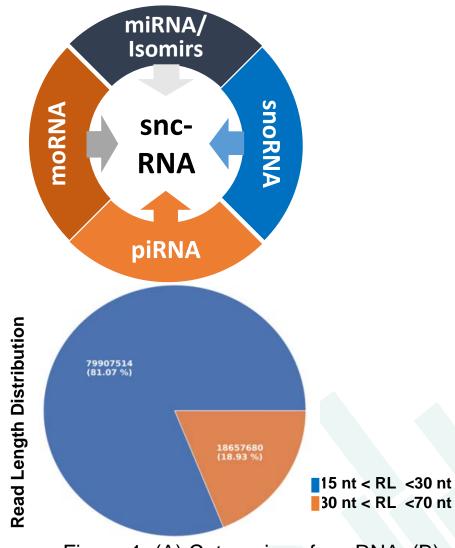


Figure-1: (A) Categories of sncRNA,4(B) read length distribution

Challenges and Motivations

- According to National Cancer Institute, a cancer can be characterized by a biological molecule that is a sign of abnormal process or a condition of disease called as biomarkers [2].
- Identification of cancer biomarker is a challenging task due to several challenges such as
 - Extracting reliable information from huge amount of genomics data.
 - Vast computational resources are required for data processing and analysis.
 - Rigorous analytic and clinical validation must be established before a biomarker is used in the clinic.
- With increasing complexity of genomics data, artificial intelligence can be helpful to identify meaningful patterns and infer salient information from multi-omics datasets that can be utilized to halt the disease progression.

Problem Statements

- 1. What are the contribution of small non-coding RNAs (miRNAs, piRNAs, and snoRNAs) in disease pathogenesis of CLL?
- 2. Are the dysregulation of sncRNAs associated with any clinical prognostic factor and affect the patient survival?

Proposed workflow for sncRNA identification from RNA-Seq data

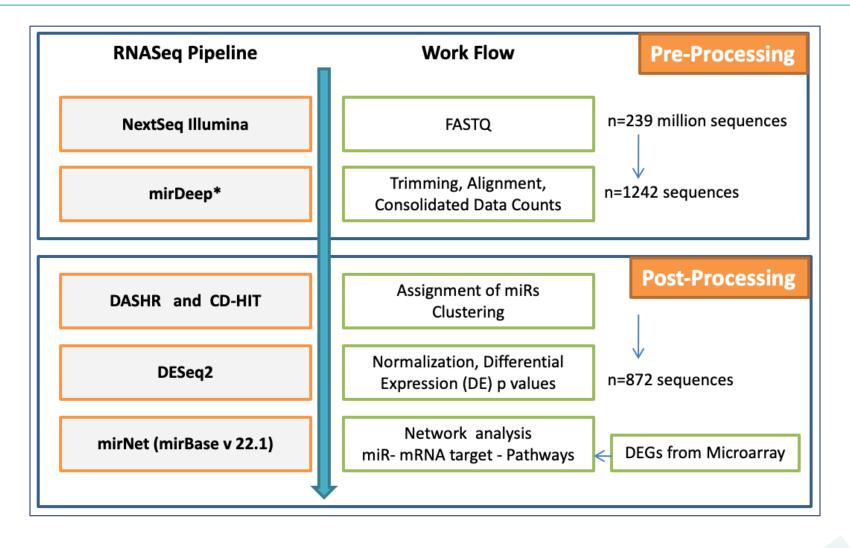


Figure-1: Workflow for RNA-Seq data analysis for biomarker identification in CLL

Dysregulated sncRNAs in CLL and Annotation of novel miRNAs IIII)

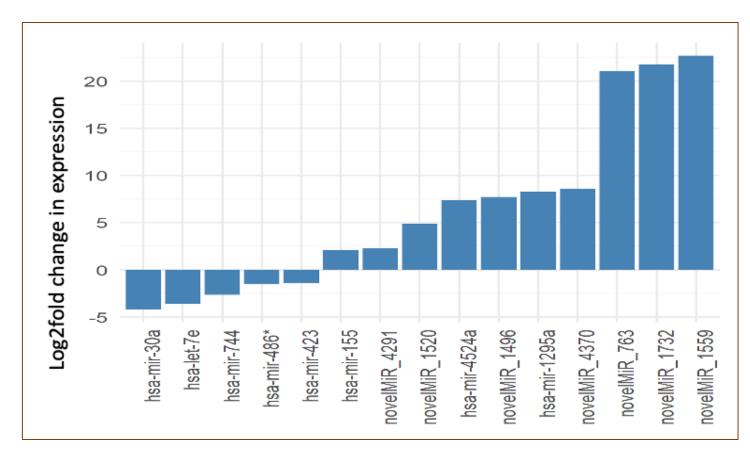


Figure-2: Dysregulated known and novel miRNAs in CLL (GSE123436)

Table-1: Annotation of dysregulated novel miRNAs using **DASHR**

Novel miRNAs	sncRNA identified based on homological similarity using DASHR database
novelMiR_4370	piR-36225
novelMiR_763	piR-30799 and snoRNA-U43
novelMiR_4370, novelMiR_1559, novelMiR_1732, novelMiR_4291, novelMiR_1520	tRNA molecules located on chromosomes 1, 6, 7, 9, 11, 12, 14, 15, 16, and 17.

Impact of miRNA dysregulation on clinical outcomes in CLL

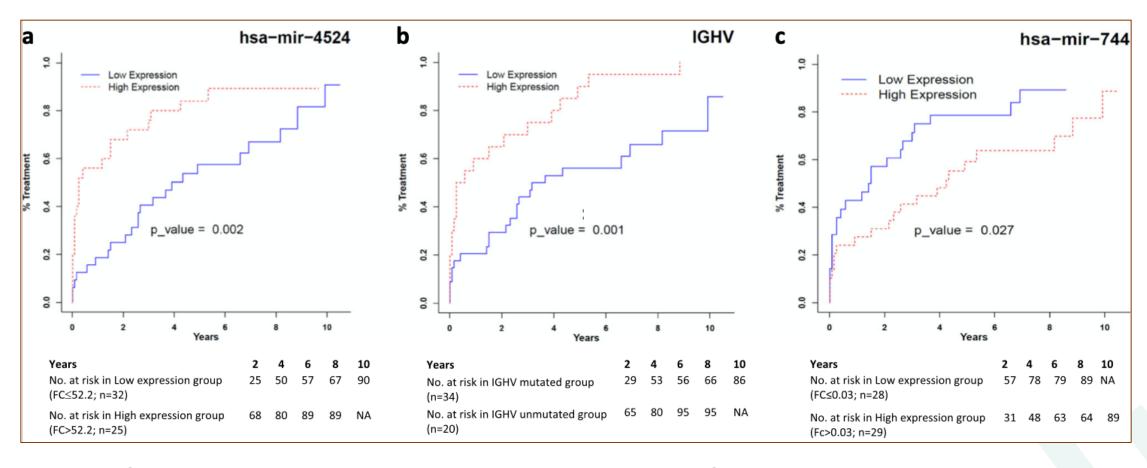


Figure-3: Cumulative incidence plots demonstrating risk of treatment in CLL patients stratified on the basis of level of expression of a miR-4524a, b IGHV mutation status, and c miR-744. The cut-offs for defining low and high expression of miRNA and the number of cases in each subgroup are shown below the curves. p-values and hazard ratios as obtained in the Fine- Gray model of multivariate analysis is shown inside the curve.

Publication

Gurvinder Kaur, **Vivek Ruhela**, Lata Rani, Anubha Gupta, Krishnamachari Sriram, Ajay Gogia, Atul Sharma, Lalit Kumar, and Ritu Gupta. "RNA-Seq profiling of deregulated miRs in CLL and their impact on clinical outcome." Blood cancer journal 10, no. 1 (2020): 1-9.